Стабилизатор тока для светодиодов

Светодиод – полупроводниковый прибор с нелинейной вольтамперной характеристикой. При незначительном изменении напряжения, ток через него может изменяться в разы. Поэтому для обеспечения надлежащего питания светодиодов требуется стабилизатор тока.

Стабилизатор тока – устройство, которое поддерживает постоянный ток в нагрузке, независимо от падения напряжения на ней. По принципу действия он может быть линейным или импульсным. Линейный стабилизатор регулирует выходные параметры за счет распределения мощности между нагрузкой и своим внутренним сопротивлением, поэтому он менее эффективен, чем импульсный. Последний же использует принцип широтно-импульсной модуляции и отдает в нагрузку ровно столько мощности, сколько нужно. При этом КПД может превышать 90%. Однако импульсный стабилизатор имеет более сложную схему и более высокую стоимость.

Рассмотрим оба варианта

Воспользуемся микросхемой LM317. На ее основе может быть построена схема линейного стабилизатора тока. Микросхема LM317 имеет три вывода и выпускается в стандартных корпусах ТО-220, ТО-263, SOT-223 и ТО-252 (D2PAK). Значение дифференциального напряжения между выводами Vout­ и Vin не должно превышать 40 В.

Простейшая схема линейного источника тока на LM317 изображена на рисунке 1.

Рисунок 1 – Линейный стабилизатор на LM317

Рисунок 1 – Линейный стабилизатор на LM317

Принцип работы заключается в том, что микросхема LM317 поддерживает разность потенциалов между выходом Vout и выводом Adjust на уровне 1,25 В. Получается, что, пренебрегая IAdj (его значение по data sheet не более 100 мкА), значение силы тока через нагрузку, вне зависимости от напряжения на ней, будет определяться как 1,25/R1.

Входное напряжение всегда должно быть по крайней мере на 3 В больше выходного Vout.

Корпус LM317 должен быть закреплен на радиатор, так как даже при 0,7 А и минимальной разнице входного и выходного напряжения, на микросхеме будет рассеиваться мощность 2,1 Вт.

Схема на LM317 очень проста, но очень неэффективна, и на практике может быть применена только для малых токов, в случае, когда по каким-то причинам нельзя использовать импульсный стабилизатор.

Наиболее простой и недорогой импульсный стабилизатор можно построить на основе микросхемы HV9910. Схема приведена на рисунке 2.

Рисунок 2 – Схема импульсного источника тока на HV9910

Рисунок 2 – Схема импульсного источника тока на HV9910

Схема работает следующим образом:

микросхема HV9910 при подаче питания открывает ключ Q1, через светодиоды и дроссель L1  и резистор Rcs начинает протекать ток. Когда падение напряжения на  Rcs достигает значения 250 мВ, микросхема закрывает ключ и ток под действием энергии запасенной в дросселе начинает течь через диод D1. Далее процесс повторяется циклически, управляемый внутренним генератором, частота которого задается резистором RT.

Схема довольно проста и надежна, работает при значениях входного напряжения от 8 до 450 В. Кроме того, ее можно приспособить к работе от сети, поставив на входе простейший выпрямитель (диодный мост и накопительный конденсатор). Вся необходимая информация для расчета номиналов используемых компонентов приведена в data sheet  производителя.

Существует еще более простая схема питания светодиодов – для этих целей можно использовать полностью интегральный стабилизатор тока (или драйвер). Примером такого драйвера может служить микросхема LDD-XXXH фирмы MeanWell. Под ХХХ зашифровано значение выходного тока, например, исполнение на 350 мА будет иметь наименование LDD-350H. Никаких дополнительных компонентов не требуется – драйвер подключается напрямую к светодиодам.

Входное напряжение от 8 до 56 В, КПД до 97%!

Рисунок 3 – Интегральный драйвер для светодиодов

Рисунок 3 – Интегральный драйвер для светодиодов

x
Для любых предложений по сайту: [email protected]